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Background
Separating multiple instruments from a song is an un-

solved problem in signal processing. However, this problem
is solved instantaneously by the human auditory system.
Can we mimic what the brain is doing to solve this problem
computationally in real time?

The human auditory pathway uses three primary princi-
ples to encode sound:

? 1. Spectral Representation: the cochlea produces a
time-frequency representation that is logarithmic in
frequency and amplitude

3 2. Phase Preservation: groups of ascending auditory
neurons fire in phase with incoming sound waves

3 3. Sparse Coding: auditory cortex is a highly over-
complete representation of the cochlea

Prior work [1] showed that preserving phase information
and sparse coding allowed for state-of-the-art vocal separa-
tion. Will a "neurally-inspired" spectral represen-
tation (ConstantQ) show similar benefits over the
commonly used Fourier transform?

Fourier vs. ConstantQ
The Fourier and ConstantQ transforms take a signal and

decompose it into its constituent frequencies, effectively al-
lowing one to view the notes and chords played at any given
time in a song.

• Linear spacing of frequency bands
• Poor resolution at relevant frequencies

• Logarithmic spacing of frequency bands (piano keys)
• Optimal resolution across spectrum

Results and Conclusions
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Fig. 1 Box-plot of overall performance (SDR) for ConstantQ (blue) and Fourier (brown) on testing set
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Takeaways
1. ConstantQ outperforms Fourier on overall

separation (SDR) for all stems (Fig. 1)

2. While ConstantQ separates stems better
(SIR), Fourier introduces slightly fewer ar-
tifacts (SAR) (Fig. 2)

With a linear regression trained over 50 epochs, we sep-
arated bass, drums, vocals, and "other" stems from the
sparse codes and reconstructed 10 minutes of audio using
the phase of the original mixture. Using the BSS Eval
Toolbox [2], we measured the amount of interference of
other stems (SIR), artifacts introduced (SAR), and over-
all distortion (SDR) in our separated audio stems.

Fig. 2 Box-plot of SAR/SDR/SIR for vocals separation
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A Future Direction
In the future, we will investigate other neurally inspired

approaches, including reintroducing phase information as
well as modeling hemispheric lateralization in the brain to
optimize our our separation results.
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Versatile Scaling
Finally, we measured the computational performance of

our classification model on a single full-length (three minute)
song to investigate whether our model can separate stems
in real-time. By slicing the song into N equal-sized pieces,
we were able to distribute computation across multiple MPI
ranks efficiently (see right). By distributing the computa-
tion across 16 or 32 MPI ranks, our model was able to
separate four individual stems faster than real time.
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Methods
Training: Using spectral representations of mixtures of

four individual stems as input, I, we use PetaVision to train
dictionaries of convolutional features, φM . By minimizing
the following energy function with respect to φ:

E =
1

2
||

Residual︷ ︸︸ ︷
~I − ~φ~a ||22 + λ||~a||1︸ ︷︷ ︸

Sparsity Penalty

this technique finds an optimal sparse representation, aM , of
the input, and optimizes the features using gradient descent
to represent generators of the input.

Sparse Code Mixtures: Once optimal dictionaries are
trained, the sparse codes of the power spectra mixtures, aM ,
are written out into training and testing sets.

Linear Regression: A linear regression is then trained
by using the training set of sparse codes aMtrain to reconstruct
power-spectra of the individual stems (i.e. Bass), resulting in
new dictionaries of convolutional features (i.e. φB). These
dictionaries are then used to separate out the stems from
aMtest and signal to distortion (SDR), interference (SIR), and
artifact (SAR) ratios for the separated tracks are measured.


